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The paper is concerned with a class of non-Newtonian fluids, v-fluids, all of whose 
properties are determined by a single dimensional constant of the same dimen- 
sions as a viscosity. A regular nth-order v-fluid is then defined to be one whose 
nth order time derivative of stress is a regular function of the local stress and flow 
fields and any of their space and time derivatives. The regularity condition 
determines the constitutive relation of such a fluid completely in terms of a finite 
set of non-dimensional constants which define the fluid. 

An obvious property of these fluids is that their motions obey the same prin- 
ciples of Reynolds number similarity as those of a Newtonian fluid, and the 
primary aim of the paper is t o  examine the extent to which their flow properties 
are the same as those of the mean turbulent flow of a Newtonian fluid. 

It is shown that a third-order fluid is the simplest v-fluid which shares enough 
properties with turbulent motion to be worth further consideration in this 
context. At infinite Reynolds number, the constitutive relation for such a fluid 
reduces to the form 

ASg+ BS2 + CS2S" + DSS'2 -I- E u ' ~ S ~  = 0, 

where A ,  B, ..., E, are isotropic tensor constants of the fluid, S is the stress 
tensor, u' is the total rate of strain tensor, dots denote total time derivatives, 
and primes denote space derivatives. A number of illustrative examples of the 
properties of such a constitutive relation are then considered, representing the 
decay of a homogenous stress field, the effect of rigid-body rotation on such a 
decay, the structure of the equilibrium stress field in the presence of homogeneous 
rate of strain, both with and without vorticity, and the nature of flow near a 
plane boundary. I n  all cases, the results appear to be consistent with known 
properties of turbulent motion, to the extent that the analysis is taken. 

Finally, the effect of finite Reynolds number on the decay of an isotropic and 
homogeneous stress field is shown to be consistent with observations on the 
decay of isotropic turbulence. 

1. Foundations of the approach 
This paper is concerned with a certain class of incompressible non-Newtonian 

fluids, in which the local stress system is in general not in equilibrium with the 
local flow. The work hasits originin astudyof the turbulent motion of a Newtonian 
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fluid, not as intended contribution to  the fundamental statistical mechanics of 
that phenomenon (which, by its nature, the present approach cannot achieve), 
but as an attempt to study at a more phenomenological level the macro-properties 
of turbulent flow systems as a whole, and the relationships between them. By 
studying a class of relatively simple dynamical systems which appear to  share 
important macro-properties with turbulent motions of a Newtonian fluid, the 
paper thus follows the growing trend of attempts to  construct constitutive 
relations for turbulence, of which a recent example is the work of Lnmley (1970). 

A central idea in all such work is that  the statistical properties of turbulent 
motion depend to only a limited extent on the initial and boundary conditions 
for the flow. The element of universality thus introduced suggests the replace- 
ment of a complicated motion of a simple (Newtonian) fluid by a simple motion of 
a more complicated fluid, with an attendant reduction in the technical difficulties 
of obtaining a solution. It is generally accepted that such an approximation, 
while still not necessarily good, is likely to be a t  its best when the Reynolds 
number of the turbulent flow is yery large. It is therefore tempting to construct a 
constitutive relation only, in the first instance, for the limiting case of infinite 
Reynolds number. However, the dangers of discussing inviscid limits without 
reference to the underlying diffusive and dissipative systems are well known 
throughout fluid mechanics, particularly statistical mechanics, and the approach 
of the present paper is to start with a class of constitutive relations whose solutions 
for all flow configurations are well behaved provided a viscosity parameter is not 
zero. There is no suggestion here that any fluid of the class can represent quanti- 
tatively the turbulent motion of a Newtonian fluid a t  low Reynolds numbers. 
The approach is simply an insurance policy which restricts attention, a t  large 
Reynolds numbers, to  those asymptotic constitutive relations appropriate to a 
class of well-behaved dynamical systems. 

Thus, a characteristic of all the fluids t o  be considered is that their material 
properties involve a parameter v, whose dimensions? are those of the viscosity of 
a Newtonian fluid, and which we may continue to call the viscosity. We now 
restrict our attention to  fluids whose only dimensional physical constant is v, and 
attach the name ' v-fluids ' to  such fluids. The reason for this restriction is fairly 
clear. A Newtonian fluid is a v-fluid, so that, if we are t o  represent the statistical 
properties of its turbulent motion by a universal law of stress, that  law must also 
contain no other dimensional constant than v. Other dimensional constants 
which determine the stress distribution in a particular flow must enter through 
the initial and boundary conditions, not through the field equations. I n  no other 
way is it possible to satisfy the well-confirmed principle of Reynolds number 
similarity for turbulent motion. 

This emphasis on the parameter v makes the approach of the present paper 
primarily suited to  phenomena in which the molecular stresses of a Newtonian 
fluid are modified by processes which have length and time scales orders of 
magnitude greater than the molecular ones. Indeed, it seems likely that the 
approach is relevant only in such cases, which, apart from turbulence, include the 

tions are adopted throughout. 
t The density of the incompressible fluid is taken to be unity, so that kinematic d e h i -  



On the motion of v-fluids 565 

behaviour of homogeneous suspensions of small particles, and possibly other 
cases. With the usual notation, we thus represent the total stress tensor aij by 

aui au, 
(axj ax) fTi3 = -paij  + v - + - - S,,., 

where -Xi.,. is the added stress tensor, and discuss the stress dynamics or con- 
stitutive relations entirely in terms of Sij. (In the turbulence problem, - &.,. is, of 
course, the Reynolds stress tensor.) An immediate and important consequence is 
that the absolute level of Si3 can be dynamically significant, while the absolute 
level of pressure remains arbitrary, corresponding to two entirely distinct forms 
of internal energy. Suoh a distinction is clearly important in the case of turbulence, 
where the Reynolds stresses arise from momentum transport by a real velocity 
field, so that 

for all vectors A,. 
The second characteristic property of a v-fluid is that its constitutive relation 

takes the form of a differential field equation of finite order in time. More pre- 
cisely) a v-fluid of order n is one in which the added stress S at a point where the 
velocity is u is governed, in an inertial frame of reference, by an equation of the 
form 

Dzc Dnzc DS  Dn-V 
,S,-) ...,-- Dtn Dtl" Dt Dtn-l )')' 

where f denotes a function of, at  most, the fields listed and any of their space 
derivatives of any order, and is regular at the origin of the multi-dimensional 
space of all these arguments. This fundamental equation (1.3) is not in any sense 
deductive. The appropriate viewpoint is to regard it as the definition of a re- 
stricted class of fluids with which the paper is concerned, the task then being to  
examine the extent to which these fluids, particularly those of low order, share 
macro-properties with turbulence. 

The relationship between (1.3) and the classical rheological principles of 
determinism and material indifference perhaps deserves comment. Lumley 
(1970) has recently emphasized that neither of these principles can be wholly 
accepted in constitutive relations for turbulence, and, at  this point, it may be as 
well to set out precisely the nature of the problem. For simplicity, we confine 
ourselves to cases of turbulent motion of a Newtonian fluid in which there is a 
unique and well-defined mean velocity ui at  every point of space-time, arising 
out of statistical stationarity of the total velocity distribution ui + u; in either 
time or one of the spatial co-ordinates. A similar notation for the mean ( p )  and 
fluctuating (p ' )  pressure distribution may be introduced. Thus, the dynamical 
equations for this turbulent motion are 

a a a 
- (?hi + u;) + (u3 + u'.) - (Ui + u;, = - - ( p  +p') + YV2(Ui + u;), 
at 3 ax.,. axi (1.4) 

and 
a 
- (Ui + u;) = 0. 
axi 
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I n  the equivalent v-fluid problem we set 

and thus embed the entire Reynolds-stress tensor into the material properties of 
the v-fluid. I n  so doing, we note that the only motion in the v-fluid is that repre- 
sented by ui, and that we shall be concerned only with laminar motion of the 
v-fluid in the sense that ui will be independent of that co-ordinate in which there 
is statistical stationarity. The important point now is that  every subsequent 
statement (exact or approximate) about Sij, whatever its nature, must be justi- 
fied as a consequence of the dynamical system (1.4) and (1.5). 

Two exact consequences of (1.4) and (1.5) are the equation of motion, 

(1 .7 )  

and the incompressibility condition, 

for the v-fluid. Another statement about Sij is (1.3) itself, and, as has already been 
noted, the apriori justification in terms of (1.4) and (1 .5)  for such a special form of 
constitutive relation is extremely weak, the object of the investigation being to 
ascertain the extent to which an indirect a postiori justification is possible. The 
principles of determinism and material indifference, however, are not so much 
concerned with the restricted form of (1.3) as with further constraints which 
should be imposed upon it as a consequence of more general considerations, and 
this greater generality calls for a correspondingly greater justification in terms of 
(1.4) and (1.5). 

Consider, for instance, that  part of the principle of determinism which requires 
the current stress distribution to be determined by the past history of the flow. 
Since ui, as determined by (1.4) and (1.5), satisfies th i s  principle, so does &, and 
this part of the principle of determinism is acceptable for a v-fluid. Moreover, the 
constitutive relation (1.3), coupled with (1.7) and (1.8), already satisfies the 
principle. Indeed, the standard initial-value problem for an nth-order v-fluid 
provides an indication of the connexion between the order n and the degree of 
refinement which is required or expected in the effect of externally imposed 
information. The situation is most easily illustrated in the case of a decaying 
system of homogeneous isotropic stress in a stationary fluid. I n  this case. (1.7) 
and (1.8) are satisfied identically, and (1.3) reduces to an nth-order ordinary 
differential equation for S as a function of time. Thus, n initial conditions are 
required, and the totality of solutions belong to a universal n-parameter family. 
I n  the application to  turbulence, this is equivalent to  requiring all energy spectra 
in isotropic turbulence to  belong to a universal n-parameter family of functions. 

The idea, also included in the principle of determinism, that the origins of 
stress must lie in the history of the immediate spatial neighbourhood of the fluid 
particle in question is, on the other hand, clearly not acceptable. Such an idea 
would be totally a t  variance with almost every aspect of fully developed turbu- 
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lence. Formally, the position is that, in the system (1.4) and (1.5)) the fluctuation 
velocity u; a t  the point xi a t  time t is not determined solely by the history of the 
conditions in the immediate neighbourhood of that  geometrical point which, 
always moving with the mean velocity ui, arrives a t  the point xi a t  time t .  Hence, 
Xij is not solely determined by these conditions. Moreover, in the equivalent 
v-fluid, the geometrical point referred to becomes a material particle, so that 
this part of the principle of determinism is not acceptable. Nor does the con- 
stitutive relation (1.3) imply such a local determination. Nevertheless, there is 
some degree of localness in (1.3)) namely, the existence of a purely local relation 
(the equation itself) between finite-order derivatives of the flow and stress fields. 
I n  the application to turbulence, even such a degree of localness as this must be an 
approximation, and the approximation represents a suggested solution to the 
‘closure’ problem of turbulence. 

The principle of material indifference asserts that the constitutive relation for 
any fluid is invariant with respect to arbitrary time-dependent rigid-body 
motions superimposed upon the flow. There is no suggestion here that the resul- 
tant motion need be dynamica,lly possible without the simultaneous superimposi- 
tion of an external force field (not necessarily conservative) to maintain it. 
Thus, the principle is apparently of a purely kinematical nature. The total 
absence of dynamics, however, is apparent rather than real, since there are 
implied restrictions on the nature of the superimposed external forces, these 
restrictions being intimately related to the dynamical substructure (molecular 
motion, turbulence, etc.) giving rise to the stresses. 

I n  the case of turbulence, for instance, it is certainly possible to  produce, by a 
suitable distribution of external forces, a motion relative to  an arbitrary moving 
rigid frame which is identical in all its detail with a known motion relative to an 
inertial frame. The two motions would thus possess identical Reynolds stress 
distributions (taking appropriate account of direction and co-ordinate trans- 
formation between the two frames). But this trivial remark has little to do with 
the problem before us or the essential dynamical content of the constitutive 
relation (1.3). The external force system required to  effect the transformation 
must, in general, have a complex spatial structure whose length scale is com- 
parable with that of the turbulence. Such an external force system must, for 
consistency, be regarded as changing the dynamical basis of the substructure of 
the v-fluid from that represented by (1.4) and (1.5). Thus, in effect, the above 
comparison is between two different v-fluids. 

This criticism is not applicable in the case of linear material indifference, 
which restricts consideration to  superimposition of non-rotating rigid-body 
motions. Here, the requisite external force field, though arbitrarily time- 
dependent, is exactly spatially uniform. It thus has a length scale which is 
infinitely large compared with that of the turbulence, and in no sense affects 
the dynamical substructure of the equivalent v-fluid. Alternatively, by casting 
the constitutive relation (1.3) in terms only of the added stresses, we may note 
from (1.4) that all these linear superimposed rigid-body motions are dynamically 
possible without any external force field, since they may be produced through the 
effect of a superimposed uniform pressure gradient in the incompressible 
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Newtonian base fluid, leaving the Reynolds stresses invariant. From either 
approach we may conclude that a u-fluid must satisfy the principle of linear 
material indifference. I n  its most general form, the constitutive relation (1.3) 
does not satisfy this principle; the necessary and sufficient condition for it to do so 
is that the fields 

Du Dnu 
Dtn ' u, -, ..., ~ 

Dt 

must not occur explicitly in the relation, though, of course, their spatial deriva- 
tives may do so. 

As noted above, the principal of material indifference may not, in the case of 
turbulence, be extended to the rotational case, primarily because of the im- 
possibility of balancing the Coriolis accelerations in the turbulence by an accep- 
table external force field. Hence, as Lumley (1970) has pointed out, no further 
invariance constraints should be placed on the constitutive relation (1.3). 
Indeed, if (1.3) were rotationally invariant, the decay of homogeneous stress in a 
stationary v-fluid would be the same as that in the same u-fluid rotating as a 
rigid body, This result is known not to  be true in the equivalent cases of decaying 
homogeneous turbulence. This particular problem, and the wa y in which vorticity 
in a v-fluid enters explicitly into the constitutive relation, is taken up in further 
detail in 53.2. 

We now come to the important role played by the regularity condition on the 
function f in (1.3). I n  view of this condition, the function may be expanded in a 
tensor Taylor series about the origin of its argument space, the coefficients in the 
series being intrinsic properties of the u-fluid. But it is a simple matter to see that 
only a finite number of these coefficients can have the dimensions of any power of 
u. It follows that f must be a (dimensionally correct) polynomial in its arguments, 
so that the form of the constitutive relation for a v-fluid is essentially determined 
by its order. For example, in view of the constraint (1.9), the most general 
constitutive relation for a first-order u-fluid is 

& = p':v-w= +p;u'x +p:vs" +p,:uu'2 +p:vu' +p;U2u'lll (1.10) 

where dots denote the total time derivatives, primes denote space derivatives, 
and the p's are non-dimensional constant isotropic tensors defining the fluid. 

The restrictions which the regularity condition places on the constitutive 
relations, especially a t  high Reynolds numbers, are so great that  the origin of the 
condition must clearly be examined. The background idea is that, for all non-zero 
values of u, every possible set of initial conditions which are spatially well behaved 
shall lead to a solution which is unique and spatially well behaved for a11 subse- 
quent times. I have not been able to  show that the regularity condition follows in 
general from this idea; but nor have I been able to find a counter-example. I f  the 
result is generally true, it would seem that a proof must be concerned with the 
following argument. 

I n  general, dimensional arguments would lead immediately to  the conclusion 
that, for instance, the quantity p i  in (1.10) may be any non-dimensional tensor 
function of non-dimensional scalar invariants of the velocity and stress fields. 
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The question then arises of how such non-dimensional scalar invariants can be 
constructed. For instance, one such function is 

pi = pi(@, where 8 = 19,/6,, 

and J 
(1.11) 

But it is then always possible to choose, as an initial condition for a flow problem, 
a velocity field which is everywhere regular and such that 0, = 8, = 0 at (say) 
xi = 0, with the property that the limit of 8 as xi -+ 0 is not independent of the 
path. Hence, if 8 is t o  be unique and spatially well behaved, p i  may not depend 
upon 8. A similar argument would seem to be applicable to every possible non- 
dimensional scalar invariant like 8, with the result that pi = constant. If this 
extension can be justified, then it would apply equally to all the defining tensors 
pFin v-fluids of all order, and the general regularity condition would be established. 

We next distinguish between two essentially different types of v-fluid: those 
in which 8.. = 0 (1.12) v - 
is a possible solution of the constitutive relation for arbitrary velocity distribu- 
tions, and those in which this is not a possible solution. Henceforth, only fluids 
of the former type will be considered; the latter being more appropriate to 
problems involving the added stress system due to particle suspensions in a 
Newtonian fluid. The idea behind (1.12) is an extension of the notion of good 
behaviour of a dissipative system at lower Reynolds numbers. That (1.12) is 
true of the equations of turbulence is well known: laminar flow is always possible 
at all Reynolds numbers, and is actually necessary at sufficiently small Reynolds 
numbers. There is no suggestion here that the constitutive relation (1.3) can 
provide a quantitative model of turbulent motion at  small Reynolds numbers, 
but it seems likely that the above features form an important structural property 
of the complete dynamical system which should be incorporated into the con- 
stitutive relation. This simplification is not necessary in order to make progress, 
but its consequences should be examined first. The conditions for (1.12) to  be 
satisfied are very simple: in (1.10) for instance, we must have 

p: = pi = pi = 0, 

with analogous results for higher-order fluids. 
Since the field equations for the dynamical substructure of a v-fluid have 

differential structure which is temporarily parabolic and spatially elliptic, it  is 
to be expected that the field equations for a v-fluid will have a similar structure, 
a t  least for finite Reynolds numbers. The mathematically natural specification 
for a v-fluid flow will therefore be determined by initial conditions together with 
boundary conditions over a closed surface. Since the constitutive relation (1.3) 
is a differential equation for S of order n in time and 2n in space, the appropriate 
conditions would appear to be, in addition to the usual initial and boundary 
conditions on u, the specification within a closed surface C of the initial spatial 
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distribution of S and its first n - 1 time derivatives, together with n conditions 
on S and its first 2n - 1 normal space derivatives at each point of C. 

The greatest interest naturally lies in the nature of the boundary conditions 
at an interface with a solid. This interest is not only concerned with the practical 
importance of such conditions, but i t  is connected with the foundations of the 
present approach which relies heavily on the principle of Reynolds number 
similarity in turbulent flow. The origin of this principle may be regarded as lying 
in the homogeneity of the no-slip condition, 

u; = 0, (1.13) 

in the dynamical substructure of a v-fluid. Thus, there is no forcing of the ampli- 
tude of the added-stress system a t  a solid boundary; it is only the geometrical 
configuration of the boundaries which influences the solution. If the principle of 
Reynolds number simiIarity is to survive, this situation must be reflected in the 
boundary conditions for a v-fluid. This constraint is clearly consistent with the 
constraint (1.12). 

The condition (1.13) immediately leads (with suitable assumptions about the 
spatial regularity of ui) to the boundary conditions, 

X has a double zero at a solid boundary. (1.14) 

For a second-order v-fluid, these boundary conditions are sufficient. It is therefore 
unfortunate that, as will shortly appear, v-fluids of order less than three are 
seriously inadequate as models of turbulent flow. For it becomes necessary to  
postulate further boundary conditions. In  principle, they should be derived from 
the field equations (1.4) and (1.5) for the substructure, just as, in principle, the 
constitutive relation (1.3) should be so derived. But the approach to the con- 
stitutive relation has been to rely on dimensional arguments and general notions 
of universality, and it would seem that, for consistency, the same approach 
to the boundary conditions should be adopted. In  the case of a third-order v-fluid, 
for instance, we are thus led t o  consider further boundary conditions of the form 

a:u'S" +u;vSiv = 0, (1.15) 

where the u's are further non-dimensional isotropic tensor constants of the v-fl uid, 
which, in the case of turbulence, represent statistical properties of the Navier- 
Stokes equations. 

The present paper does not in fact contain any examinatioii of a boundary- 
value problem for a fully viscous third-order fluid, and it may well be that the 
above approach will need revision in the light of subsequent investigation. In  the 
limit of infinite Reynolds number, the boundary-value problem has an entirely 
different structure (see $2.5). 

We are now in a position to return to the central problem of constructing 
constitutive relations for turbulent flow at infinite Reynolds number. If, 
formally, the scales of u, S ,  length, and time, are all counted as O ( l ) ,  then the 
constitutive relations for low-order v-fluids take the form 

(n = I), S = v-p:S2+O(vO), 

(n = 2), 8 = v-"3!33 + v-yp;s$ + ptu'X2) + O( VO) , 
(1.16) 

(1.17) 
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(n = 3), B = u-3p?~4+ ~ - 2 ( p ~ ~ 2 , $ + p ~ u ' ~ 3 )  

+ u-'(pBS8 + p;g2  + P $ ! ~ ~ L Y "  +p: +pg ~ ' ~ 8 ~ )  + O( uo) . ( 1.18) 

It is possible to deduce a few general properties of these dynamical systems, and 
compare them, in a purely phenomenological way, with those of turbulent 
motion a t  large Reynolds numbers. 

In a first-order fluid, for instance, the limit equation becomes 

p:s2 = 0, (1.19) 

which, in view of the notation, is not a statement about the amplitude of the 
stress tensor, but about its relative geometry. Since the equations are universal, 
this can only be a condition of isotropy. Thus, a t  large Reynolds numbers, a 
first-order v-fluid must in all cases have an approximately isotropic stress system. 
Significant departures from these coiiditions can persist only in layers of intense 
shear; elsewhere they must decay through transients of very short duration. 
While this behaviour has close affinities with that of the (negligible) contribution 
t o  the Reynolds stress from the smallest eddies of turbulent motion, it is quite 
unacceptable in a model which attempts to include the whole of the turbulent 
energy into the material properties of a v-fluid. 

The limit equation p;s3 = 0 

for a second-order u-fluid clearly has very similar properties to  ( l .9) ,  and is 
unacceptable for the same reasons. If the fluid is degenerate, however, in the 
sense that 

the limit equation of (1.17) becomes 

P; = 0, (1.20) 

p ~ 8 8 + p ~ ~ ' X ~  = 0, (1.21) 

with more interesting properties. I n  fact, the solutions of this equation would 
seem to be characteristic of the behaviour of a substantially larger range of 
(still small) eddy sizes than those represented by a first-order fluid. However, 
(1.21) is still too simple to  include the whole of the turbulent energy, as can 
immediately be seen from the decay of homogeneous stress in a stationary fluid, 
or from the total absence of stress-transport terms. 

Developing this sequ.ence of ideas, we now see that the case of a doubly 
degenerate third-order u-fluid is much more interesting. From (1.18) we have 

3 = p: = p ,  = 0, 
with the limit equation 

(1.22) 

p,4"s~+pgs2+pgs2X" +p;SX'2+p;u'282 = 0. (1.23) 

Perhaps the most important single property of (1.23) is the existence ofa bounded 
relaxation time for the stress in the limit u --f 0. The lowest order v-fluid which can 
achieve this is a third-order one, and it must be doubly degenerate. A similar 
remark applies to  the length-scale associated with the transport terms in S2S" 
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and SXt2. Further, the equation includes the possibility of a steady homogeneous 
stress system in the presence of uniform strain, the equilibrium being given by 

p ; U ' w  = 0. (1.24) 

Since (1.24) is homogeneous in both ut and X, the solution will obviously be such 
that the stress-type is a function only of the strain-type, the amplitude of neither 
being relevant. For fluid constants which give real solutions to (1.24), the struc- 
ture of the dynamical equation (1.23) may then be described as the response of the 
decay and transport terms to departures from equilibrium. Finally, we may note 
the possibility of a stress-entrainment process essentially governed by a non-linear 

(1.25) 
wave equation of the type S8-S2Xt' = 0. 

All of the points mentioned in the preceding paragraph find an important place 
in the theory of turbulence. The v-fluid approach may not be able to provide a 
quantitative model of turbulence, but a relatively simple self-consistent dynami- 
cal system with such strong affinities to turbulence would seem to deserve further 
study in its own right. The remainder of the paper is concerned with some aspects 
of such a study. 

2. The mechanics of a doubly-degenerate third-order v-fluid at infinite 

2.1. The decay of homogeneous stress in a Jluid at rest 

When there is no flow and no spatial variation of stress, the equation of motion is 
satisfied identically, and the constitutive relation (1.23) becomes 

Reynolds number 

p:XB+pg& = 0. (2.1) 

Since R is a symmetric tensor, and (2.1) is the limiting form of an expression for a 
time-derivative of X, the most general possible form of (2.1) is 

a, A$& A S i i  + a2 Xi, Rkk + a3( Xi,c Bijk + ksjk &) + a4 X,, 8,, sii + a5 x,, 8,, sij 
+a~h,~h~j+a,~ . i ,~ j ; .k+ash~ks i i+a,~k lh 'k l s i i  = 0, (2.2) 

where the a's, being invariants of the tensors p j  and p:  are to be regarded as 
being intrinsic constants of the fluid. 

The simplest case is obviously that of an isotropic stress system, for which (2.2) 
reduces to 

where p is a constant fixed by the a's. The general solution is then 

R X,, = I__ 

(t - t,)l+P' 

where the constants R and to are fixed by the initial values of S,, and hkk. For 
small values of p, this result is compatible with the observations of Batchelor & 
Townsend (1948) on decaying, approximately isotropic turbulence. A n  examina- 
tion of the effect of finite Reynolds number ( Q  3) suggests that p must be positive; 
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for the present limiting analysis, however, little is to be gained from considering 
non-zero values of p. 

While a full examination of (2.2) in the anisotropic case would doubtless be of 
theoretical interest, the limited extent of experimental evidence on the decay of 
homogeneous turbulence would make such an investigation scarcely worthwhile 
as an attempt to  evaluate the fluid constants. It is sufficient t o  enquire whether 
the constitutive relation is compatible with the two principal processes of decay a t  
large Reynolds numbers, namely, the decay of internal energy, and a general 
tendency towards stress-isotropy. A single example can answer this question. 

Consider, then, the constitutive relation 

8 k k  #ij - 2 8 k k  &i,j + $( 1 + n) ( 1 + m) (8,j - $ s k k  Sij) #kk 

- (1 + n + m) gkk(&.jj - 8ij) = 0, (2.5) 

where n and nt are positive constants related to the a's of (2.2). The general 
solution of this system of differential equations is 

'ii I Bii R s.. = __ Sii+ 
t - to (t  -toy+" (t  - to)l+m ' 

where Rand to are scalar constants, and Aii and Bij are symmetric tensor constants 
subject to the condition 

A,, = B k k  = 0. (2.7) 

Thus, (2.6) involves twelve arbitrary constants of integration, to be fixed by the 
six initial conditions on each of Sii and A!?,$. Provided both n and m are positive, 
the solution (2.6) represents a general tendency towards isotropy, the relaxation 
time compared with the relaxation time for energy decay being adjustable 
through choice of n and m. Moreover, the whole solution appears to  be thermo- 
dynamically acceptable for arbitrary initial conditions, subject only to the 
constraints 

&kk(O) < o and A , A ~ S , ~ ( O )  > o for all A,. 

2.2. The effect of rotation on the decay of homogeneous stress 

Another dynamical process which might usefully be illustrated by a simple 
example is t h e  effect of a rigid-body rotation on the decay of homogeneous stress. 
This process, which is intimately related to  the invalidity of the principle of 
rotational material indifference, has already been referred to  in 9 1, and the present 
purpose is merely to illustrate the general nature of results which might be 
expected. 

For this purpose we consider a particularly simple v-fluid in which the last 
term of the constitutive relation (1.23) takes, in the absence of a rate of pure 
strain, the form 

'p$u'z#2 K2r[G2W.ilWjlsik, (2.8) 

where ~p is a non-dimensional constant, and 
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A more critical evaluation of this form is taken up in $2 .4 ;  for the moment we 
note only that it has the required symmetry, and is such that there is no equili- 
brium solution other than #,&k = 0 when the motion is a rigid-body rotation. 

Combination of (2 .5 )  and (2.8) gives 

where w is the constant angular velocity, with general solution 

(2.10) 

(2.11) 

in which R and to are again the constants of integration. When w(t - to) is small, 
(2.11) reduces to R 

8 c k  E 0 7  

in agreement with (2 .4 ) .  When w(t  - to) is large, the asymptotic decay is given by 

#kk N 2K,.%Rw eXp { - K,LLW(t - t o ) } .  (2.12) 

Thus, when the relaxation time of the natural decay process is short compared 
with the reciprocal of the rotation rate, the dynamics of the substructure of the 
v-fluid is essentially unaffected by rotation (this being also the normal situation 
in the usual continuum approximation to a molecular gas). When this inequality 
is not satisfied, the rotation has a substantial effect and acts, as might be expccted, 
as a powerful suppressor of stress. 

The effect of the rotation on the relative geometry of the stress tensor is more 
complicated. I n  the case of isotropic initial conditions, however, the stress t,eiisor 
must remain axially symmetric, and i t  becomes a simple matter to examine the 
situation during the asymptotic regime (2.12). Taking the rotation vector to be 
parallel to the x3-axis, we find that the ( 3 , 3 )  component of the constitutive 
relation becomes (using (2 .12) )  

fi33 1- KpW( 3 + n -k m) 833 -k &?p2W2( 1 -k n) ( 1  -k m)fl33 

= iK2p2L2W2[&( 1 4- n) ( 1  + m) - (1  + n + "L)] f l k k .  (2.13) 

The transient solutions of (2.13) must clearly by asymptotically negligible 
compared with the forced solution, for, otherwise, the internal energy associated 
with the X3, component of stress would be greater than the total available. 
Similarly, the forced solution itself must satisfy the constraint LS'~~ < Skk. These 
constraints arise from the origin of stress as momentum transport by a real 
velocity field and demand, in the particular fluid under consideration, a fairly 
powerful process of tendency to isotropy represented by the condition 

nm-(n+m) 2 4. (2.14) 

The extreme case of equality in (2 .14)  gives rise to an asymptotic one-dimensional 
stress system 8,, = s k k .  For progressively larger values of the left-hand side of 
(2 .14) ,  the asymptotic stress system becomes progressively more isotropic, with 

1 nm - (n + m) - 1 
3 nm - (n + m) - 3 .  

83, = k s k k  and 
k = -  (2.15) 
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2.3. Equilibrium in irrotationab rate of strain 
We now turn to a central dynamical problem in the motion of v-fluids. This 
concerns the nature of the spatially homogeneous stress tensor which can be in 
equilibrium with a spatially homogeneous field of irrotational rate of strain. 
Ideas about the nature of such an equilibrium have been made the basis of a 
co-ordinated view of turbulent phenomena by Townsend (1956) and later authors. 
To this extent, the present paper may be regarded as providing an elementary 
mathematical model of such ideas, together with models of the attendant spatial 
and temporal processes which are brought into play when the equilibrium is 
disturbed. 

In  this problem, we are concerned solely with the term, 

p$PS2, (2.16) 

in the constitutive relation for a doubly degenerate third-order v-fluid, and it is 
unfortunate that the complexity of its geometrical structure should be so great. 
There are no less than twenty independent scalar invariants of the tenth-order 
tensor p: which survive after all the constrains of symmetry and incompressi- 
bility, including the irrotationality of the rate-of-strain field, have been imposed. 
(For the sake of completeness, these twenty terms are set out explicitly in the 
appendix.) Nevertheless, it is a simple matter to see that, in general, a third-order 
v-fluid cannot have a homogeneous distribution of stress in the presence of an 
irrotational rate of strain, other than s k k  = 0. The condition for a non-trivial 
solution to exist is a set of relations between the scalar invariants of p: which 
define the fluid, and these relations divide v-fluids into two distinct classes whose 
dynamical behaviour at  large Reynolds numbers is radically different. No further 
atten tion is given in the present paper to fluids in which equilibrium is impossible. 

As noted in 5 1, the homogeneity of (2.16) in both u’ and X makes impossible a 
unique solution to the equilibrium equation. We may therefore normalize the 
stress and rate-of-strain tensors, without loss of generality. Thus, we set 

(2.17) 

8 k k  = f?klf?kl = 1, (2.18) 

and adopt the corresponding non-dimensional normalized meanings of Si, and 
eij throughout the remainder of $2.3.  There is now only one remaining scalar 
invmiant of eij, namely 

$ = eklelmemk = 3ele2e3, (2.19) 

where el, e2, e3,  are the principal rates of strain. Clearly q5 defines the rate-of-strain 
type, being zero for a plane strain and & 1/46 for axially symmetric extension and 
compression, respectively. 

If the equilibrium equation is such that Sii (with its new meaning) is uniquely 
determined by q5, simpleinvariant analysis shows that Xi, must have the structure 

#ii = 4(1 -g (q5) }S , i+ f (q5 )e i j+g(q5)e ike jk ,  (2.20) 
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where f(#) and g(q5) are non-dimensional scalar functions of #. Further, the 
equilibrium term (2.16)) being a second-order symmetric tensor function of eii 
must also have this form : 

p;d2X2 = ASij +Be, + Cei,eik, (2.21) 

where A ,  B, C, depend on #, f(#), g(q5), and the fluid constants associated with 
pi. Thus, the necessary and sufficient conditions for equilibrium are given by the  
three equations 

These three constraints on the functions f and g illustrate the mathematical 
nature of the dynamical problem as one of algebraic compatability. 

(2.22) A = B = C = 0. 

In more detail, the equations (2.22) take the form 

(2.23) 

where the Qi are quadratic functions off and g (and otherwise independent of #), 
with constant coefficients which are linear combinations of the invariants of p:. 
(The details of these quadratic functions are also set out in the appendix.) For 
each value of #, each of the equations (2.23) is that of a conic in (f, 9)-space, and 
the equilibrium condition may be regarded as the condition that these three 
conics be concurrent for all values of #. 

For general fluid constants, the equations (2.23) are incompatible, and there is 
no solution. In a proper sense, the next most general situation is that in which 
there is a solution with 

f(#) = constant, g(q5) = constant. (2.24) 

For, a necessary condition for a solution point (f, g) is that it  should lie on both 
q5-eliminants of the system (2.23)) namely, the quartic curve 

(2.25) 

(2.26) 

In  general, these two curves will have only a finite number of common points, so 
that f and g cannot be functions of 9. The sufficient condition for a solution is 
then that one of these common points shall lie on one of the conics (2.23) for all 
values of q5, that is, shall lie at  the intersection of (say) Qa and Q5. In  order for f 
and g t o  be functions of #, (2.25) and (2.26) must clearly have a continuous curve 
in common, which requires more stringent conditions on the fluid constants. 

A full examination of this problem of algebraic consistency, and the restriction 
which it places on the possible forms of the functions f(#) and g($), would clearly 
be of theoretical interest. Once again, however, the limited experimental evidence 
scarcely justifies such an examination, particularly as this evidence appears to be 
compatible with a specially simple solution belonging to the class (2.24)) namely, 

f(#) = constant = -A, g(q5) 3 0. (2.27) 



On the motion of v-JEuids 577 

Such a solution gives, in the limited case of irrotational equilibrium only, the 
stress tensor a virtual viscosity structure 

Sij = l-a..-heij. 3 ( 2 . 2 8 )  

For h = 0 . 2 0 ,  ( 2 . 2 8 )  gives table 1,  which shows values close to those suggested by 
Townsend ( 1 9 5 6 ) .  

811 8 2 2  8 3 3  

Plane strain 0.19 0.33 0.48 
Axially symmetric extension 0.16 0.42 0.42 
Axially symmetric compression 0.25 0.25 0.50 

TABLE 1 

The conditions on the fluid constant & which permit the existence of the 
solution ( 2 . 2 7 )  are such that there are five linear relations between the twenty 
defining constants of p i .  There is thus a fifteen-parameter family of v-fluids with 
the same equilibrium solution ( 2 . 2 7 ) .  These undetermined constants are mainly 
concerned with the dynamical response of the decay and transport terms in the 
constitutive relation to departures from equilibrium. However, they are also 
partly concerned with the uniqueness of the equilibrium solution itself; a matter 
which can most easily be discussed in terms of an example. 

Perhaps the simplest v-fluid which has the required equilibrium structure is 
that in which ( 2 . 1 6 )  takes the form (in the absence of vorticity) 

- I?{ (Xi, - QS,, Sdl) ( Sj, - +8kk Sj,) enln emn - h2h'ik eil ejz} = 0, ( 2 . 2 9 )  

which clearly has the solution ( 2 . 2 8 ) .  Moreover, when none of the principal rates 
of strain is zero, it  is a straightforward matter to show that the solution ( 2 . 2 8 )  is 
unique, thus rendering the structural assumption ( 2 . 2 0 )  self-consistent. In the 
case of a plane rate of strain, however, the solution is not unique. Taking the x3- 
axis to be that along which there is no extension, we find that the equations for 
S3, and S,, (with respect to principal axes of eij) are 

( 8 3 3 - i S k k ) 2  = O ,  (2 .30)  

and S12(xll + S22 - $Skk) = O* ( 2 . 3 1 )  

The unique solution of ( 2 . 3 0 )  thus makes the bracket in ( 2 . 3 1 )  zero, leaving S,, 
arbitrary. The equations for the remaining normal stresses, namely, 

then have solutions for all X12, subject to the usual condition that the principal 
stresses shall be positive. In  such a fluid, therefore, the equilibrium conditions 
determine the principal stresses in terms of the fluid constants, 

S& = ( g - 2 - t h ) 8 k k ,  S,*, = ( + - 2 - t h ) S k / c ,  8:3 = (2 .33)  
37 F L Y  44 
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but not their orientation relative to the principal axes of rate-of-strain, the latter 
being fixed, in the case of strict spatial homogeneity, by the history of the flow in 
a more completely specified initial-value problem. 

Since it is possible to choose the fluid constants in such a way that the above 
indeterminacy in equilibrium is removed, giving the constitutive relation a 
structure different from (2.29), this distinction becomes a criterion for dividing 
v-fluids, once again, into two different classes. The dynamical consequences of the 
distinction are substantial, a point which is taken up further after Considering 
the effect of rotation. 

2.4. Equilibrium in the presence of rotation 

We now return to the example (2.8) of a v-fluid in which the constitutive relation 
is very simply affected by vorticity. The equation of equilibrium for such a 
fluid is 

(2.34) 

Moreover, the equation of motion (1.7) requires that, for homogeneous stress 
distributions, the rate of pure strain shall be plane, with the rotation vector 
aligned along the direction of the zero rate of strain. Hence, we need only consider 

- K ~ { ( X ~ ,  - +#kk&) (Sj, -$SkkSjl)emnemn-h2S~keileil - ,u2S~kwilwjl)  = 0. 

the tensors el, = -e22 = e ,  

W I 2  = -W21 = w ,  
(2.35) 

with every other component of both tensors zero. 
In the axes defined by (2.35)) the equilibrium equations for S,, and S12 reduce 

to (2.30) and (2.31), with the same resulting arbitrariness in S12. The remaining 
normal stresses are then given by 

which again fix only the magnitude of the principal stresses, 

their orientation relative to the principal axes of rate of strain remaining undeter- 
mined by the equilibrium conditions. Whatever the status of this arbitrariness in 
the equilibrium solution may be in the irrotational case, it seems that, when 
vorticit y is present, the arbitrariness has dynamical consequences which are 
unacceptable, and that the vorticity must determine the orientation of the 
principal axes of stress relative to those of the rate of strain. The point at issue 
concerns steady uniform shear, and it is necessary to anticipate results of the 
following section. It appears that for these v-fluids which, like turbulence, exhibit 
a universal logarithmic law for the velocity distribution near a plane boundary in 
such flows, the stress tensor must, to the first order, be in equilibrium at the 
boundary, and the equilibrium conditions must be such that the entire stress 
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tensor is determined uniquely, apart from its scale Sk,. The equilibrium con- 
stitutive relation (2.34) thus requires modification. 

A simple modification of (2.34) which has the required property is 

K Z { ( s i l - i S k k J d l )  (Sjl- ~ S k k ~ ~ l ~ e m n ~ m ~ ~ ~ h 2 S ~ k e i l e ~ l ~ ~ 2 s ~ ~ W i ~ o j l  

+ k(Sii - +Sk, Sij) (Ski ekm olm - a#,, qm w,,)} = 0. (2.38) 

The equilibrium equations for S3, and S,, in this fluid are (in the principal axes 

of eii) (S33-QSkk) {e2(s33-QSkk) -kw(eS12 + awXkk)> = O ,  (2.39) 

S12{ - e2(S33 - QS,,) - ko(eS,, + awS,,)} = 0, (2.40) 

of which the unique solution with non-zero S,, is 

XI, = -uaw/e, (2.41) 

833 = 3f lkk .  (2.42) 

When o = e ,  the flow is a uniform plane shear. In  axes along (5,) and orthogonal 
The remaining principal stresses continue to be given by (2.37). 

(x2, x3) to Dhe flow, the stresses are then 

(2.43) 

El, = (Q+a)S,, = 0.6OXk,, 

S,, = (+-a)#,, = 0.078,,, 

8 3 3  = +8kk = 0*33Sk,, 

8,, = - (&A2+ $p2- a2)iS,+, = - 0-09Skk, 

where the numerical values corresponding to ,a = 0.33 and a = 0.26 have been 
chosen to provide reasonable agreement with observations in the constant-stress 
layer of a turbulent flow. 

It is interesting that this estimate of p should be such that, for values of w/e  
only slightly in excess of unity, equilibrium becomes impossible without the 
support of (unacceptable) tensions in the added stress system. Thus, in these 
closed-streamline flows of the v-fluid, the only true equilibrium solution is X,, = 0,  
though the possibility of a pulsating quasi-equilibrium cannot be ruled out. 

2.5. Two-dimensional $ow near a plane boundary 

Consider, now, the steady unidirectional flow ofa v-fluid along a two-dimensional 
channel under the influences of a constant pressure gradient. From (1.23), the 
constitutive relation becomes 

pgs2fY +p;sS'z +p;u'2sz = 0. (2.44) 

If this equation is to represent, in a qualitatively acceptable way, the turbulent 
flow of a Newtonian fluid in the central (inviscid) region of such a channel, the 
velocity gradient u' must have a simple-pole singularity on the boundaries. The 
basis of this well-confirmed 'law of the wall' is very general, and follows from 
little more than dimensional arguments and an assumption of overlapping regimes 
of viscous and inviscid flow in a vanishingly thin layer of constant stress at  the 
boundaries. The result should therefore be true for a whole class of v-fluids and, 
in effect, becomes a boundary condition for the limit equation (2.44). 

37-2 
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If t.he stress at the boundary is to  be bounded, there are, locally, two ways in 
which this boundary condition can be satisfied. In the first, S is regular a t  the 
boundary, so that the first two terms in (2.44) are bounded a t  the boundary. 
Hence, the last term must be bounded a t  the boundary, which implies, in view of 
the singularity in u '2 ,  that S must be a double solution of the equilibrium equation 
p;uf2S2 = 0 at the boundary. But such boundary conditions always lead to an 
over-determination of the inviscid flow problem. For, in the flow under con- 
sideration, elimination of u' from the four? equations (2.44) yields three second- 
order differential equations for the three normal stresses, the distribution of shear 
stress being known from the equation of motion. Hence, if the constitutive 
relation determines the equilibrium structure of S uniquely, there will be six 
boundary conditions on the normal stresses a t  each boundary arising from the 
double solution of the equilibrium equation. Clearly there is, in general, no 
solution to  such a differential system. Moreover, even when the constitutive 
relation is such that only the principal stresses, not their orientation, are deter- 
mined by the equilibrium equations, there are still too many boundary conditions 
(four) a t  each boundary to  permit a solution in general. 

That there should be no solution under the above assumptions concerning the 
regularity of S is encouraging, since such a solution would be incompatible with 
some of the ideas underlying the 'law of the wall'. I n  particular, the regularity 
would imply that the non-dimensional constants in that law would be deter- 
mined by the solution of a boundary-value problem and could not therefore be 
universal. Alternatively, the regularity is incompatible with the idea that the 
only relevant length-scale in the local flow is the distance from the boundary. 

The above difficulties are all resolved in the second way of satisfying (2.44) near 
a boundary, which requires that S shall have a singularity at the boundary of a 
type which leaves S bounded: typically, 

S N So+Xlyfi (0 < n < I), (2.45) 

where y is the distance from the boundary. The boundedness of X,, again requires 
i t  to have an  equilibrium structure, but in this case it need only be a single sohtion 
of the equilibrium equations, since the transport and equilibrium terms in (2.42) 
both diverge a t  the boundary in a manner determined by n, which itself is 
determined as a universal constant in terms of the fluid constants pz and pi .  The 
sole boundary condition is therefore 

S as an equilibrium structure a t  the boundary. (2.46) 

The dynamical consequence of the absence of arbitrariness in the equilibrium 
solutions is now apparent. Since the shear stress is known, (2.44) determines the 
three normal stresses a t  each boundary, and, apart from difficulties associated 
with the application of boundary conditions at singular points of the differential 
equations, these conditions are just sufficient for the sixth-order differential 
system for the normal stresses. Thus, it is reasonable to  suppose that a v-fluid 
with a unique equilibrium structure, and whose constants are such that n satisfies 

By symmetry, the equations in two of the shear stresses are identically zero, 
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the inequality (2.35), will, with the boundary condition (2.46) give rise to a 
universal ‘law of the wall’ of the required form. 

Further progress is again made difficult by the very complicated structure of 
the general form of the transport terms in (2.44) and the limited object of the 
remainder of this section is merely to illustrate the nature of the dynamical 
problem by the motion of a particularly simple v-fluid whose transport terms are 
chosen on a basis of little more than analytic convenience. Such a choice is 

(2.47) 

where b is a further non-dimensional constant for the fluid. The only general 
feature of (2.47) that is worth noting is the representation of the transport of a 
quadratic function of the stress by an elliptic differential operator. In  other 
respects the choice is without significance, and can scarcely be expected to 
provide a complete model of turbulent transport processes. 

For two-dimensional flow in the direction of x1 in the layer of constant shear 
stress 70 near the boundary x2 = 0, the constitutive relations become 

((ASlll-+s,,)”>” = F { ( s l l - Q s , , ) 2 + 7 ~ - - ( h 2 + ~ 2 ) s ~ k  

((822-QSJ&)2)” = F{(S2,- Q&,)2+7;- g ( P + p ) S &  

+ k ( 4 ,  - Qflkk)  ( B 4 1 -  2 8 2 2  - a.S,,)}, (2.48) 

+ k(S2,- Qflkk) (&flu- 4x22 -a&,)>, (2.49) 

(2.50) ( ( 8 3 3  - QXkJ2)” = F ( ( 8 3 3  - + k ( S 3 3  - Q s k , )  (is11 - i s 2 2  - ~ S k k ) } ,  

and 

( 8 3 3  - QSkk)‘’ = P ( ( f 3 3 3  - Q&k> - k(4s,, - $ 8 2 2  - .s,,>>, (2.51) 

where primes denote differentiation with respect to x2, and 

F = 2~U’~/bfl,,. (2.52) 

The interest lies in finding the solution of this system of equations in the neigh- 
bourhood of a plane of equilibrium at which, from (2.43), 

811 = (Q + 4s0, 

(2.53) 

It appears that, for this fluid, the expected singularity is associated only with 
the overail1 scale Xkk, so that we set 

(2.54) 
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where T,, T,, are regular at x2 = 0, with T,(O) = T2(0) = 0, and S k k  is singular at  
x2 = 0 in such a way that S k k ( 0 )  = A,, and #;k(o)  is unbounded. Equations (2.50) 
and (2.51) then give 

k - 2  
T;(O) = ~ + 2 T@), 

and B’ llx; as x2-+0. 

The remaining equations reduce, for small values of x2, to 

with general solution X i k - 8 :  = S ~ x ~ + S ~ x ~ 2 ,  

where S, and X2 are arbitrary constants, and n, and n2 are the roots of 

n(n - 1) = - r$/a2X& 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

Since the right-hand side of (2.59) is negative, both n, and n2 lie in the interval 
(0 , l )  as required by the constraint (2.45) on the singularity. The solution is 
therefore self-consistent. 

The result (2.56) gives with (2.52), 

where 1 in an arbitrary length, and 

(2.60) 

(2.61) 

The constant K is thus expressible entirely in terms of the fluid constants, so that 
the logarithmic law (2.60) takes a universal form. In  this respect, the illustration 
is typical of a wide class of v-fluids. Significant comparison of these results with 
observations on turbulence, however, would be out of place without a much more 
exhaustive examination of both the effect of vorticity on the equilibrium solu- 
tions, and the possible structure of the transport terms in the constitutive relation. 

The above sketch of the potential properties of third-order v-fluids at infinite 
Reynolds number has been largely based on particular cases which illustrate, 
in the simplest possible manner, dynamical processes of a kind which occur in 
turbulent motion. The results for these cases are encouraging, and suggest that a 
further study of the motion of u-fluids at  infinite Reynolds number may be 
rewarding. The present paper does not analyse further any of these problems. In  
$3, we return to the question, raised in 5 1, of the nature of the singular perturba- 
tion generated by large but finite Reynolds numbers. The only dynamical prob- 
lem considered in this context is the very special one of decay of isotropic stress, 
largely because the geometrical simplicity of this problem enables all doubly 
degenerate third-order v-fluids to be considered with complete generality. 
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3. The effect of finite Reynolds number on the decay of isotropic stress 
For a doubly degenerate third-order v-fluid, which is at rest and has a homo- 

geneous and isotropic stress system, the constitutive relation becomes 

where /3 and y are constants of the fluid. The transformation 

#kk = s O f ( x ) ,  = vx/ysO, (3.2) 

reduces this relation to the one-parameter family of differential equations 

It is obviously an intrinsic property of any third-order v-fluid that the decay of 
isotropic stress should be governed by only three parameters, namely, the 
initial conditions for (3.3). But this circumstance raises problems of self-consis- 
tency. For, in the problem under consideration, there is no supply of energy to the 
stress system, so that for a continuous range of values of f"(0) and any pair of 
valuesf(0) > 0 andf'(0) < 0, the resulting decay law must be such that, for all 
x > 0,  (i) f(z) > 0 and f ' ( x )  < 0 and (ii) f ( x ) - + O  as x - f o o .  One might have ex- 
pected these energetic constraints to impose conditions on p; but in fact they do 
not. 

The transformation 

d4 f '  = -f24(s), g = logf, $' = - dy , (3.4) 

reduces the Falkner-Skan equation (3.3) to the first-order differential equation 

(3.5) 

whose solutions in the phase-plane may be examined in the usual manner. 
The value p = 2 is clearly critical. For this value, the differential equation has 

two singular points: a node a t  the origin; and a saddle point at qi = 0,  $' = 1. The 
two solutions through the saddle point, one of which is q5 = 0, divide the plane into 
four regions, with typical solutions in each region as sketched in figure 1. The 
arrows on these solutions indicate the direction of time for a decaying stress- 
system, with the right-hand and left-hand halves of the figure corresponding to 
y > 0 and y < 0, respectively. 

The relevant asymptotic behaviours are: 

$ 3 0 ,  $' -+O,  4 ' ~ 6 4 ~ ;  (3.6) 

$ 3 0 ,  q5'+$_00, $' - constant/$; (3.7) 

43--00, f$'-++co, $' N -24 .  (3.8) 

Examination of these behaviours shows that regions ( 2 ) ,  (3), and (4) must be 
rejected. In  region (3), every solution is such that t$& changes sign through zero 
after a finite time; and in regions ( 2 )  and (4), every solutionis such that flkk passes 
through a minimum and subsequently increases after a finite time. 
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As t- tco in region (l) ,  however, every solution asymptotes to the universal 
form (3.6), or 

For arbitrary initial conditions within region ( l) ,  therefore, the solutions describe 
a system of transients, whereby the (nearly) inviscid form (3.9) is established. 
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FIGURE 1 

The asymptotic relevance of the inviscid approximation, for all initial conditions, 
follows from the fact that the Reynolds number R = -s~k/vf?lck ultimately 
increases without limit, though logarithmically slowly. 

When /3 + 2 solutions outside region (1) may again be rejected if X,, is to 
decrease monotonically to zero as t-too. When p > 2, the solutions are sub- 
stantially the same as those sketched in figure 1, except that the nodal behaviour 
a t  the origin becomes modified to 

@ (P - 2 ) A  (3.10) 

which corresponds to the asymptotic behaviour 

t - t o  N C'sk.' (3.11) 
as t- tm. 

When /3 < 2 ,  the situation is qualitatively different. The singularity at the 
origin separates into two: a saddle remaining at the origin; and a node moving to 
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$ = 9(2 - /? ) ,  $' = 0,  within region (1). The local solutions near this node are 
such that two special solutions have the form 

FIGURE 2 

(3.12) 

the first of which also passes through the singularity at the origin. All other 
solutions near the node have a high order of contact with this first solution. Thus, 
the former region (1) is split into four subregions by the solutions (3.12), in the 
manner sketched in figure 2 .  

All solutions in region (1)  terminate a t  the node, corresponding to the asymp- 
totic decay law 

(3.13) 
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in which the decay Reynolds number R takes the universal value 6/(2-p). 
However, when the initial Reynolds number is large, this asymptotic state is not 
established directly through a system of rapid transients. The central role of the 
transients is to change R, without appreciable change in Xkk, from its ‘forced’ 
initial value to its ‘natural’ value at a point on the singular solution joining the 
origin to the node. If, a t  the end of this process, R is still large (subregions (a) and 
(d )  in figure 2 ) ,  the transient solution merges with the singular solution at  a 

Log x 
FIGURE 3. Comparison of the solutions of (3.3) with experiment, for p = 1.75, y = 0.5: 
x , So = 79.5 om2 e, 3.10; +, 0.114; 0, 0.0120. The scale So is defined by the 
asymptotic behaviour x N 32f-2 as x + 0. 

point close to the origin, and the inviscid decay law (3.1 I )  is established, in which 
state the system loses most of its energy. Unlike other ranges of /3, however, 
when /3 < 2, the inviscid decay law (3.11) is not self-preserving; it contains its 
own mechanism for destruction, which is such that R slowly decreases to the 
value 6/( 2 - /3) . 

The general nature of these results for /3 < 2 corresponds fairly closely with 
measurements of approximately isotropic turbulence in a wind-tunnel (see 
Batchelor & Townsend 1948). Evaluation of p and y from sucha comparison with 
experiment, however, is not a t  all sensitive. Clearly /3 cannot be substantially 
different from 2, in view of Batchelor & Townsend’s approximate result 

s,, cc (t - 4J-1, (3.14) 

but values a8 low as 1.75 seem to be acceptable. The theoretical results (ignoring 
the transients) for this value of /3, and y = 0.50, are compared in figure 3 with the 
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measurements of Batchelor & Townsend. The success of the comparison is 
partially dependent upon the fact that, for p = 1-75, the asymptotic Reynolds 
number 6/(2--) is 24, whereas the only experiments for which there are 
measurements over a reasonably extended period of decay are at Reynolds 
numbers in the range 50-150. By the standards of the theory, therefore, these 
Reynolds numbers are not large, and the average value of the exponent n in 
decay laws of the form 

is significantly closer to 1 than its asymptoticvalue Q at infinite Reynolds number. 
A more critical test of which values of p and y ,  if any, can approximately 

represent the decay of isotropic turbulence would appear to await measurements 
over a more prolonged period of decay at  significantly higher Reynolds number. 

8 k k  ( t  - to)-" 

Appendix 
1. Form the constitutive relation for irrotutional equilibrium 

For a steady, homogeneous, andirrotational, rate-of-strain field, the constitutive 
relation (2.13) becomes: 

r)ieijeklSkISm,+P2eijeklSkinSlni 

+P3 e ike jk8km f p 4 e i k  ejk81m81m 

+ ~ 5 e ~ l e j k X k ~ X m . n + ~ 6 e i 1 e j k S k n i X l ~  

~ ~ 7 ~ e i k 8 j k ~ e j k 8 i 1 ~ ~ e 1 m 8 1 m ~ ~ 8 ~ e i k 8 j l  + ejkXil)ek18nim 

+pS(eikxj l  + ejk8il)  ekmSlm fPIdeikSjl f ejkSil)elmSkm 

+pi1 &k sjk elm elm + Pi2 8jl ekm elm 

+P13sijxkkelmelm fP14XijSklekmelni 

+ Pi5 ekl ekl smp 'mp ' i j  +Pi6 ekl ekl skn ' i j  

+pi7 ekl ekm81m 8pp 'ij + P I 8  ekl ekm 

-b Pi9 ekl enip 

smp 'ij 

smp 'ij -k p20 ekl emp Skmslp ' i j  = O ,  

where the fluid constants pi are scalar invariants of p!. 
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